
Genesis 1:1-3 in Graphs: Extracting Conceptual Structures
from Biblical Hebrew

Ulrik Petersen
Aalborg University

Department of Communication and Psychology
Kroghstræde 3

DK – 9220 Aalborg East
Denmark

ulrikp@hum.aau.dk
http://ulrikp.org/MA1

Citation: Petersen, Ulrik, Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical
Hebrew, SEE-J Hiphil 4 [http://www.see-j.net/hiphil] (2007), Accessed DD.MM.YY

Abstract
Automatically transforming text to conceptual graphs has long been a goal of

the Conceptual Graphs community, starting with Sowa and Way’s seminal
paper in 1986. We have developed a method for transforming Old Testament
texts in Hebrew into English-based conceptual graphs, and in this paper, we
report on our method and its results. The method utilizes the text itself, a
syntactic analysis of the text, an ontology of the text, plus some
transformational rules. The end result is CGs with “shallow semantics” which
can be deemed by a human to represent faithfully, if somewhat sterilely, a
possible meaning of the original text. We argue that the method is general
enough that it could be applied to texts in other languages.

1 Introduction

One application of Conceptual Graphs which has pervaded CG research since the very beginning is
that of transformation of natural language text into a knowledge base using CGs. Such a knowledge
base could have many uses: semantic searches (Nicolas, Moulin and Mineau 2003), question-
answering (Velardi, Pazienza and De Giovanetti 1988), narratological reasoning (Schärfe and
Øhrstrøm 2000), and formation of the foundation of dialogue-based systems.

In this paper, we report on our own method for transforming natural language text into CGs. The
method has been developed for Biblical Hebrew, but, as we argue later on, it is plausible that it would
work for other languages as well. We have applied the method to a portion of the text of the Hebrew
Bible, and have demonstrated that the method works for this text.

The method takes as input five classes of data: First, the Hebrew text itself. Second, a ready-made
syntactic analysis of the text, which, together with the text, have been provided by the Werkgroep
Informatica at the Vrije Universiteit Amsterdam under Prof. Dr. Eep Talstra (Talstra and Sikkel
2000). Collectively, the text plus its analysis are called “the WIVU database.” Third, an ontology of
the text is used. Fourth, a number of lexicons. And fifth, a set of rules for transforming the text to
CGs.

Our method proceeds in four stages: First, the ontology is automatically constructed by matching a
Hebrew-English dictionary with WordNet (Fellbaum 1998). Second, the WIVU syntax is transformed
to more traditional syntax trees. This is necessary because: a) the syntactic analysis is not really a tree,
and b) it has units which are far too large for the method to work. Exactly how the syntax is
transformed is outside of the scope of this paper, but suffice it to say that the resulting trees have units
with only a few immediate constituents, and resemble traditional phrase structure trees. Third, this

1 The present article is a summary of the author's MA thesis. See (Petersen 2004b) for more information.

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

transformed syntax is used as a guide to transforming the text into “intermediate CGs”. These
CGs have almost no syntax left, but are still “not quite good enough.” Therefore, a fourth stage
uses CG-based rules to transform the “intermediate graphs” to “semantic graphs.” These
semantic graphs have almost no traces of Hebrew syntax left, and represent a “good enough”
possible translation of the Hebrew source text into English-based CGs.

The rest of the paper is laid out as follows. First, we give a literature review. Second, we
describe our method for automatically constructing the ontology. Third, we describe our method
for transforming the input text to CGs. Fourth, we present our results. Fifth, we discuss our
method and its results. And finally we conclude the paper.

2 Literature review

As we see it, two methods are described in the literature for transforming text to conceptual
graphs. One uses a lexicon of canonical graphs and joins them, guided by a syntax tree. This
method could be dubbed “syntax-directed joining of canonical graphs”. This method was
pioneered by Sowa and Way in their seminal paper from 1986 (Sowa and Way 1986), but many
others have followed in a similar vein (Sowa 1988, Velardi, Pazienza and De Giovanetti 1988,
Fargues, Landau, Dugourd and Catach 1986). Here we have only mentioned some of the more
interesting references; a lot of references have been left out due to space-restrictions. This
method works roughly as follows: At word-level, a lexicon of canonical graphs is used to give
meaning to the individual lexical items. These canonical graphs are then joined using a syntax-
tree from a parser as the guiding factor in deciding in which order to perform the joins. This is
basically the method of (Sowa and Way 1986, Sowa 1988), and is followed with only slight
variations in the other works cited above.

The other method described in the literature could be dubbed “ontology-guided, syntax-
driven, and rule-based joining and refinement of graphs”. At the lowest linguistic level, namely
that of words, this method uses an ontology rather than a lexicon of canonical graphs as the
starting point for its generation of conceptual graphs. Like the method of Sowa and Way,
however, it then uses a syntax tree to drive the composition of conceptual graphs above word-
level. After the whole syntax-tree has been traversed, and one or more complete CGs have thus
been generated, a set of rules are applied for refinement of the graphs. The main work in this
vein seems to be Caroline Barrière’s PhD thesis (Barrière 1997), while another is Nicolas,
Mineau and Moulin’s article from ICCS 2002 (Nicolas, Mineau and Moulin 2002), later
brought to fruition in (Nicolas 2003, Nicolas, Moulin and Mineau 2003). Barrière’s work
mainly follows the process outlined above.

The work of Nicolas et al., however, takes a slightly different approach. In this work, the
syntax-tree is at first transformed to “syntax-graphs”, which are simply a CG-representation of
the syntax tree which are full of syntax and have almost no semantics. Rules are then applied
using standard CG-matching algorithms in order to transform these “syntax graphs” into
“semantic graphs”.

Our own work is mainly an adaptation of the process described in (Barrière 1997), with some
ideas taken from (Nicolas, Mineau and Moulin 2002, Nicolas 2003), and some of our own ideas
added in, in order to fit our particular problem and the particular challenges of the Hebrew
language of the source text. In the following sections, we describe our method.

3 Ontology

Every CG knowledge base has to have an ontology (Sowa 2000a, p. 487). For our purposes, we
could not find a suitable Hebrew ontology, and so we opted for constructing one ourselves. This

2

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

was done by matching a machine-readable Hebrew-English dictionary provided by the
Werkgroep Informatica with WordNet (Fellbaum 1998).

WordNet contains nouns, verbs, adjectives, and adverbs. Nouns and verbs are organized into
several hyperonymically ordered hierarchies, each with a unique beginner. Adjectives and
adverbs are ordered by various relations, but not hyperonymically. Strictly speaking, it is not
individual words which are related; instead, words are grouped into synsets (or “synonym sets”,
since the words in a synset are synonyms of each other), and the relations obtain between these
synsets.

The result of our method is a datastructure laid out as a lattice of entry clusters. Inside of each
entry cluster are zero or more ontology entries. An entry cluster corresponds to a WordNet
synset. An ontology entry corresponds to a sense of a lexeme in the Hebrew-English dictionary.

Our method works as follows. For each lexeme in the source text, look it up in the dictionary.
Construct an Abstract Syntax Tree (AST) from the definition. Traverse the AST in such as way
that separate senses of a lexeme end up in different ontology entries. For each sense, use various
heuristics to find the most specific synset in WordNet which matches the English glosses of the
lexeme. Once such a synset is found, create an entry cluster for the synset, if not already in the
ontology. Then add all of the supertypes of the synset as entry clusters if not already done.
Finally, create an ontology entry for the sense of the lexeme, and add it to the original entry
cluster.

Adjectives are placed underneath “attribute”, whereas adverbs are placed underneath
“manner”. It is well known that adjectives are not always used as attributes, and that adverbs
can have functions other than describing manner. However, these approximations served us
well for our purposes.

Several other heuristics could be mentioned; here we will limit ourselves to only one. “Be X”
verbs (such as “tov”, mening “be good”) end up in the ontology under “attribute” along with the
adjectives, with a gloss of “X” (“good” for “tov”). This is utilized in the rules described below
for transforming words to CGs.

When the method fails for whatever reason, we have simply emended the dictionary such that
a suitable WordNet synset is arrived at. This has the advantage of not altering the method, only
the input data.

Finally, the unique beginners from WordNet are placed into a top-level ontology which has
been derived from (Sowa 1992) and (Martin 1995). It can be seen in Fig. 1.

4 Creating conceptual structures

4.1 Introduction

As mentioned in the Introduction, the method runs in four stages. First, an ontology is
constructed for the lexemes in the text, using the method described in the previous section.
Second, the WIVU syntax is transformed into more traditional syntax trees. The precise nature
of this process is intricately bound up with the particulars of the WIVU database, and as such
are not interesting enough to be pursued at length in this paper. Third, the resulting syntax trees
are transformed to “intermediate graphs” using rules for how to treat each syntactic
construction. Fourth, the resulting graphs are refined into “semantic graphs” using rule-driven
transformations based on graph-matching algorithms. An overview of the process can be seen in
Fig. .

In the following two subsections, we describe first the syntax-to-intermediate-CG process,
then the intermediate-CG-to-semantic-CG process.

3

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

Figure 1: Our top-level ontology, derived from (Sowa 1992) and (Martin 1995). A “W_” prefix
means that the concept type comes from WordNet.

4.2 From Syntax to Intermediate Graphs

For word-level and phrase-level, our method resembles that of (Barrière 1997), whereas for
clause-level, we have taken cues from (Nicolas, Mineau and Moulin 2002) and added a few
ideas of our own.

The input is a single clause, and the output is a list of CGs. Whenever there is ambiguity at
some point in the transformation, the output list is duplicated as many times as the ambiguity
necessitates, and the various possibilities are added in parallel.

The syntax tree is traversed in a depth-first manner. Thus the syntax tree is first traversed
down to the bottom level, namely word-level, and is then traversed upwards again until the
clause-node is encountered. For units up to and including the immediate phrasal constituents of
the clause, the syntax-tree is used to decide the order in which to join the representations of the
components. At clause-level, however, a different algorithm takes over, described below.

Each part of speech or phrase-type is used as input to a rule, which produces one or more
(fragments of) CGs. In each CG, there is a specially privileged concept which is called the
attachment point, and which is distinguished from all others by having a unary relation called
“attach”. This attachment point is the concept at which the CG is joined with other CGs at a

4

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

higher level.
For word-level, a number of rules are applied. For nouns, verbs, adjectives, and adverbs, the

corresponding entry cluster or entry clusters are retrieved from the ontology, using the ontology
entry or entries of the lexeme of the word as the mediating factor. Then various rules are
applied, exemplified in Table . For example, plural nouns are simply translated to a concept
with the type taken from the ontology, and the plural marker “{*}” added. Verbs are treated
differently based on whether they are marked as “be X” verbs in the ontology or not. If not, the
verb is treated simply as a concept with the right concept type. If it is a “be X” verb, it is treated
as a “[state]” concept with an embedded CG which has the concept “[be]” attached to an “attr”
relation again attached to a concept with the concept type of the verb. Recall that “be X” verbs
end up under “attribute” in the ontology; hence this choice of relation is justified.

Prepositions and conjunctions become relations between concepts at higher levels. For these
purposes, a small Hebrew-English lexicon is used which translates Hebrew prepositions and
conjunctions to one or more English-language relations. For example, the Hebrew word “W:”
(which is the connective conjunction) is translated to the relation “and”. Likewise, the Hebrew
preposition “<L” is translated to the relation “over”.

For phrase-level, the input is a phrase structure rule (e.g., “NP --> noun”), and the output is
one or more CGs. In order to know what phrase-structure rules might come up, and thus be able
to write rules for how to treat them, we had to produce a grammar of the source text. This was
not hard, in that the syntax-trees afforded easy reversal of the parsing process.

Examples of phrase-level rules are shown in Table , along with their resulting CG
representations. When a concept of the resulting CG contains a right-hand-side part of the
phrase structure rule in italics, it is understood that that concept is replaced by the CG which is
the representation of that part. Moreover, it is really the “attachment point” concept of the
underlying CG representation that replaces the concept, with all other concepts and relations of
the underlying CG copied along, and any referent components in the resulting CG added to the
referent of the attachment point. Finally, the “attach” relation from the underlying CG is
removed, so as to leave only one “attach” relation in the resulting graph.

For example, the production “NP --> article noun” is represented by a concept whose concept
type is that of the noun, but which gets the indexical “#” added to the referent of the noun-
concept, in order to show that it is definite.

The “parallel construction” with the production rule “NP --> NP/PAR conjunction NP/par”
deserves special mention. The “/PAR” and “/par” designations are phrase-functions assigned by
the WIVU syntax. The former designates “first element of a parallel construction” whereas the
latter designates “second element”. First, the two NPs are transformed to CGs. Then the
resulting CG representations are joined using the relation taken from the Hebrew-English
lexicon translating prepositions and conjunctions to relations. Then, the resulting graph is
embedded as a nested referent graph in a concept whose concept type is the minimum common
supertype of the types of the two NPs. Finally, an “attach” relation is attached to the resulting
concept. For example, the NP “[NP [NP/PAR Jacob] and [NP/par Esau]]”2 would be
transformed to the CG “[Person: [Person: Jacob]–and–>[Person: Esau]]”.

2The [brackets] are here meant not as CG-brackets, but as linguistic brackets denoting phrase-boundaries.

5

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

Figure 2: Overview of the process of the method.

Table 1: Examples of Word-level rules.

input output
noun, singular, no suffix [noun]<–attach
noun, plural, no suffix [noun: {*}]<–attach
verb, no suffix, is not “be_X” [verb]<–attach
verb, no suffix, is “be_X” attach–>[state: [be]–attr–>[verb]]

Table 2: Examples of Phrase-level rules.

input output
NP --> noun [noun]<–attach
NP --> article noun [noun: #]<–attach
NP --> NP/PAR conjunction NP/par [minComSuperType(NP/PAR,NP/par):

 [NP/PAR]–conjunction–> [NP/par]]<–attach

6

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

This process continues, as mentioned before, up until the point where the immediate
constituents of the clause have been converted the CGs. At that point, a different algorithm
takes over. The immediate constituents of the clause are simply joined in a star, using the “most
significant” constituent as the hub of the star, and using the “phrase functions” of the
constituent phrases as the relations joining the representations of the other constituents to the
representation of the “most significant” constituent. The “most significant” constituent is found
by applying a “sliding scale” of importance for phrase-functions, and simply picking the one
with the highest score. Generally, the following principle is used:

Predicates > Subjects > Objects > Complements > Adjuncts > All others

Predicates are always verbs of some sort in the WIVU database. Predicates are taken as central
for two reasons. First, the verbal valency of a predicate verb in a sense determines what other
phrases can cooccur with the verb, apart from peripheral elements such as adjuncts. Second, the
predicate verb is central because many of the other constituents often incur relations with it.
That is the case for subjects, objects, and complements. It should be noted, however, that in
some linguistic theories, such as Role and Reference Grammar (Van Valin and LaPolla 1997),
constituents such as fronted elements and time-references do not incur relations with the verb,
nor would any linguistic theories claim that adjuncts incur relations with the verb, except when
the adjuncts are PPs.

Finally, after the clause has been processed, the resulting graph or graphs are each
encapsulated in a concept which either has type “proposition” or has type “Situation”. The
choice of type depends on the type of the clause as given by the WIVU database: If the clause
type is “quotation”, the type “proposition” is chosen; otherwise (e.g., for narrative clauses), the
type “Situation” is chosen.

The process described above produces CGs which are “quite good” but not quite “good
enough”, in that they have traces of the Hebrew syntax left, especially at clause-level. The next
subsection describes how we deal with this problem.

4.3 From Intermediate Graphs to Semantic Graphs

The final step of the method aims at removing the last traces of Hebrew syntax, thus yielding
fully semantic CGs.3 The input to the last step is the list of intermediate CGs produced in the
previous step, and the output is again a list of CGs, hopefully with only one CG left.

[Rule: Sample input:
 [Universal*a][Universal*b] [Situation: [light*a]
 [Premise: [be_1?a: Pred] [be_1*b: Pred](Subj?b?a)
 [Entity?b](Subj?a?b)]]
 [Conclusion: [Univeral?a] Sample output:
 [Universal?b](Stat?b?a)] [Situation: [be_1*a][light*b]
]] (stat?b?a)]

Figure 3: Example of a rule along with sample input and output.

For refinement of CGs, both Nicolas et al. as well as Barrière use rules structured as a premise
plus a conclusion. Whenever a premise matches a part of a CG, the corresponding matched

3As we argue later on, however, it is only “shallow semantics”.

7

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

parts are replaced by the conclusion. After having applied all applicable rules, however,
Barrière then copies whatever didn’t get matched, whereas Nicolas et al. leave out whatever
wasn’t matched. Furthermore, Barrière keeps the premise and the conclusion separate, whereas
Nicolas et al. gather them up into a single graph.

We follow the same course of action as Barrière with respect to copying whatever didn’t get
matched, but follow Nicolas et al. in their rule structure.

Our rules are made up of a [Rule] context whose referent is a conceptual graph. The nested
CG contains three items: a) A premise (which is a context with type “Premise” and a nested CG
expressing the premise), b) a conclusion (which has the same structure as the Premise, except
its type is “Conclusion”), and c) A number of [Universal] concepts used as coreference links
between the premise and the conclusion. This is precisely the structure employed by Nicolas et
al.

An example rule can be seen in Fig. , along with sample input and output graphs.

4.4 Implementation

The method has been implemented in the Jython language4 using the Notio library for
providing CG operations (Southey and Linders 1999). The Emdros corpus query system is used
for storage and retrieval of the WIVU database (Petersen 2004a, 2005, 2006a, 2006b)5 . The
sourcecode implementing the method can be downloaded from the URL mentioned at the front
of the paper underneath the address.

In the beginning, God created the heavens and the earth.
[Situation:
 [God]<-agnt<-[create]-
 ->thme->[entity: [heavens: {*} #]->and->[earth: #]],
 ->in->[beginning]]

The earth was formless and void, darkness was over the surface
 of the ocean,
[Situation: [Situation:
 [Universal: [darkness]->stat->[be_1]-
 [emptiness]->and->[void] ->over->[surface_1: {*}]-
]<-stat-[earth: #]] <-poss<-[ocean]]

and the Spirit of God was hovering over the waters.
[Situation:
 [hover]-
 ->agnt->[spirit]<-poss<-[God],
 ->over->[surface_1: {*}]<-poss<-[water: {*} #]]

And God said: ``Let there be light'' And there was light.
[Situation: [proposition: [Situation:
 [say]->agnt->[God] [be_1]<-stat<-[light] [be_1]<-stat<-[light]
]]]

Figure 4: The CGs resulting from applying the method to Genesis 1:1-3.

4See http://www.jython.org/
5See http://emdros.org/

8

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

5 Results

The method just described has been applied to the first three verses of the first chapter of the
book of Genesis in the Hebrew Bible. The verses, along with the resulting graphs, can be seen
in Fig. 4.

6 Discussion

6.1 Compositionality

One of the foundational assumptions underlying the design of our method is that syntax and
semantics are intricately interwoven.

The precise nature of this interwovenness is elusive, but we believe that they are interwoven
in such a way that syntax, to an extent that is perhaps larger than what is usually assumed in
some parts of the landscape of linguistic theories, contributes decisively towards the meaning of
a given sentence. Another way of making the point is to say that we believe that syntax, at least
for some languages, plays a large role in determining what a sentence means. This notion is not
novel; rather, it has been assumed in Artificial Intelligence since the very beginning of the field,
and is also acknowledged in many linguistic theories such as Role and Reference Grammar
(Van Valin and LaPolla 1997).

The particular way in which syntax plays a role in determining the meaning of a sentence may
vary from language-family to language-family. For a large class of languages, Hebrew included,
it appears that syntax has a bearing on semantics because the semantics of a sentence in that
language obeys the compositionality principle, and because syntax appears to be the factor
guiding the order in which the semantics is is composed.

Fargues et al., make the point beautifully (Fargues, Landau, Dugourd and Catach 1986, p. 73):

“A classical property of the formal models for natural language semantics used in AI is that they obey the
compositionality principle. It is usually assumed that a representation of the semantics of an entire sentence
can be built by combining the semantic representations associated with its components.” (p. 73)

In our work, it has been found that Hebrew syntax exhibits the qualities which enable the
compositionality principle to work for Hebrew, precisely when guided by Hebrew syntax. That
is, the semantic representation of the lowest phrasal units can be composed from the semantic
representation of their constituent words; the semantic representation of the higher phrasal units
can be composed from the representation of their constituent words and/or phrases; and the
semantic representation of clausal units can be composed from the representation of their
constituent phrases. This is because the phrasal units expressed in Hebrew have strong internal
coherence, and are not easily split apart by intervening material (van der Merwe, Naudé and
Kroeze 1999).

6.2 Shallow or surface semantics

Velardi et al. (Velardi, Pazienza and De Giovanetti 1988, p. 252) draw a distinction between
“deep” and “shallow” semantics, and affirm that their work falls within the latter category:

“We believe that the ultimate goal of a language-understanding system is to produce a “deep”
representation, but the methods by which this representation should be derived are unclear and not generally
accepted in the present state of the art.” (p. 252)

9

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

Our work falls squarely within the “shallow semantics/surface semantics” camp as well. For
any given CG that is produced by our method, the “meaning” should be able to be extracted by
means of three things: a) The ontology, giving meaning to the conceptual types, b) The relation
hierarchy, giving meaning to the relations, and c) The syntax of the CG language (CGs are
bipartite graphs; the direction of arcs determine the arguments of a relation; etc.) – the syntax of
CGs helps us relate the semantics of the concept types with the semantics of the relation
hierarchy to form a coherent whole.

However, if we look closely at each of these steps, it surfaces that the semantics are very
shallow: First, our ontology has no canonical graphs underneath each entry, but merely a
reference to WordNet’s dictionary definition. Second, our relation hierarchy refers to external
dictionaries. Third, the preceding two points imply that what we are really dealing with is not
semantics, but a collection of symbols connected by a certain syntax.

This goes right back to the meaning triangle of Ogden and Richards, mentioned in (Sowa
2000b). The meaning triangle relates an object (such as a cat) with the symbol which stands for
the object (such as “Garfield”), and these two in turn are related by the triangle to the
“meaning” of the object, or the concept or neural excitation which appears in the mind of a
person thinking about Garfield the cat.

Sowa calls this last neural excitation “elusive” (p. 60), and with good reason. Hoffmeyer
(Hoffmeyer 1996) writes:

“All computer programs are completely based on Peircean “secondness”, i.e. syntactic operations, since
applications of the rules governing the manipulation of the symbols does not depend upon what the symbols
“mean” (their external semantics), only upon the symbol type. The problem is not only that the semantic
dimension of the mental cannot be reduced to pure syntactics. ... The problem rather is that the semantic
level itself is bound up in the unpredictable and creative power of the intentional, goal-oriented, embodied
mind.”

Thus Hoffmeyer would argue that it takes an “intentional, goal-oriented, embodied mind” to
produce semantics; and since intentions are inherently based on Peircean Thirdness, and since
all present-day computer programs are completely based on Peircean “Secondness”, it follows
that present-day computer programs cannot attain to “deep semantics” – all they can do is to
manipulate symbols syntactically.

Thus all present-day computer programs must rely on syntactic operations on symbols, and
cannot access any external semantics.6 Applying this to the results of my method, we see that
the semantics of the resulting CGs are by definition limited to “surface semantics” rather than
“deep semantics”. This is because the “deep semantics” could only be attained by accessing
“external semantics”, which cannot be codified in the computer except through more symbols
which indexically point to that “external semantics”. We are not arguing that symbols cannot
account for semantics, nor that semantic concepts cannot be reduced to symbols; we are merely
arguing that if it is possible, the present state of the art cannot produce the complex of symbols
which would presumably be required to produce “deep semantics”.

6.3 The non-centrality of Hebrew

How central to the working of our method is the choice of input language? And how central is
the particulars of the WIVU syntax? Could the method be applied to other languages and other
kinds of syntactic analysis?

6This is related to Searle’s Chinese Room argument. We are not claiming that Searle is right; merely that the
present state of the art has not proved him wrong.

10

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

The answer to these questions depends on the amount of modification that one is willing to
accept to the method. Let us summarize the main points at which the method is dependent on
Hebrew and the particulars of the WIVU database.

First, the ontology is Hebrew-based. However, any other ontology could be “plugged in”
without much difficulty, as there is little Hebrew-specific about it. All that is required is that the
ontology be able to relate lexemes of the input language to concept types.

Second, Hebrew plays a role in the Syntax-to-CG rules. Yet again, here Hebrew can be seen
to be immaterial to the method itself, insofar as the rules could be rewritten for a different
parsing strategy without changing the algorithm driving the transformation. All that is required
is that we can account for all production rules. This can be achieved either by reverse-
engineering a phrase-structure grammar from existing analyses (as we have done), or by simply
taking the phrase-structure rules from the grammar that produced the synatctic analysis.

Third, the WIVU syntax plays a role in what the method does with immediate constituents of
clauses. Recall that at that juncture, we produce a “star” with the most important phrase as the
hub, and the other phrases related to the hub through their “phrase functions”. Admittedly,
phrase-functions are a particularity of the WIVU database, but they are also not that uncommon
in syntactic analyses. Thus all that is required for the method to work is that the syntactic
analyses at the level of the highest phrasal units exhibit some form of “phrase functions”, and
since this is not all that uncommon (e.g., the TIGER corpus (Brants, Skut and Uszkoreit 1999)),
we can assume that this is not an onerous requirement.

Fourth, in the rules for transforming intermediate graphs to semantic graphs, the WIVU
syntax plays a role via the phrase functions. However, the algorithm is so general that it could
be applied to different rules with no changes to the algorithm of the method. Thus, for a
different language with a different syntactic analysis, only the rules would have to be exchanged
for others tailored to that language.

Thus it appears that our method is general enough that it could be applied to other languages
than Hebrew.

7 Conclusion

We have presented a method for transforming Hebrew text to conceptual graphs, and have
presented some results of the method. The method could aptly be dubbed “ontology-guided,
syntax-driven, and rule-based joining and refinement of graphs”, and is based on the methods
described in (Barrière 1997, Nicolas, Mineau and Moulin 2002, Nicolas 2003).

We have argued that the semantics of the Hebrew language obeys the “compositionality
principle”, guided by syntax. We have argued that what the method produces is “shallow
semantics” rather than “deep semantics”. And finally, we have argued that the method could be
applied to other languages with little modification to the algorithms.

Numerous points of critique could be advanced against our work. Here let us mention a few.
First, the ontology should ideally be extended to include canonical graphs and schemas for each
entry. This is so as to be able to put “more semantics” into the ontology. Second, the stage
which transforms “intermediate graphs” to “semantic graphs” could be made better, e.g., by
rejecting CGs for which no rules matched. As it is, if no rules matched, the input CG is copied
verbatim without flagging a warning. Third, a lot of Hebrew language features are left
unprocessed such as aspect, mood, verbal stems (binyanim), and inter-clausal relationships.
These could all be taken into account.

Opportunities for further research abound. For example, the input data to the method could be
extended to cover the full Hebrew Bible, including the Aramaic portions. Second, applications

11

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

could be made from the results of such a full-scale translation of the Hebrew Bible into
conceptual graphs. Applications could include automatic Bible Translation and narratological
analysis. Third, our method could be improved in various ways. For example: Anaphora
resolution could be added, inter-clausal relations could be considered, along with aspect and
mood, elliptic clauses, and clauses which play a role in other clauses. Finally, metaphors could
profitably be handled in a better way.

References

Barrière, C.: 1997, From a Children’s First Dictionary to a Lexical Knowledge Base of
Conceptual Graphs, PhD thesis, Université Simon Fraser.

Brants, T., Skut, W. and Uszkoreit, H.: 1999, Syntactic annotation of a German newspaper
corpus, Proceedings of the ATALA Treebank Workshop, Paris, France, pp. 69–76.

Fargues, J., Landau, M.-C., Dugourd, A. and Catach, L.: 1986, Conceptual graphs for semantics
and knowledge processing, IBM Journal of Research and Development 30(1), 70–
79.

Fellbaum, C. (ed.): 1998, WordNet: An Electronic Lexical Database, MIT Press, London,
England and Cambridge, Massachusetts.

Hoffmeyer, J.: 1996, Evolutionary intentionality, in E. Pessa, A. Montesanto and M. Penna
(eds), Proceedings from The Third European Conference on Systems Science,
Rome 1.-4. Oct. 1996, Edzioni Kappa, Rome, pp. 699–703.

Martin, P.: 1995, Using the WordNet concept catalog and a relation hierarchy for knowledge
acquisition, in P. Eklund (ed.), Proceedings of the Fourth International Workshop
on PEIRCE, Santa Cruz, USA, pp. 36–47.

Nicolas, S.: 2003, Sesei: une filtre sémantique pour les moteurs de recherche conventionnels
par comparaison de structures de connaisance extraites depuis des textes en langue
naturel, Master’s thesis, Université Laval.

Nicolas, S., Mineau, G. W. and Moulin, B.: 2002, Extracting conceptual structures from English
texts using a lexical ontology and a grammatical parser, in G. Angelova, D. Corbett
and U. Priss (eds), Supplemental proceedings of ICCS 2002, pp. 15–28.

Nicolas, S., Moulin, B. and Mineau, G. W.: 2003, Sesei: A CG-based filter for internet search
engines, in A. d. Moor, W. Lex and B. Ganter (eds), Proceedings of ICCS 2003,
Vol. 2746 of LNAI, Springer Verlag, Berlin, pp. 362–377.

Petersen, U.: 2004a, Emdros — a text database engine for analyzed or annotated text,
Proceedings of COLING 2004, pp. 1190–1193. http://emdros.org/petersen-emdros-
COLING-2004.pdf.

Petersen, U.: 2004b, Creation in Graphs: Extracting Conceptual Structures from Old
Testament Texts. MA thesis, University of Aalborg, Department of Communication.
Published in: Impact -- an Electronic Journal on Formalisation in Media, Text and
Language -- Impact Theses, http://www.impact.aau.dk/theses.html and
http://ulrikp.org/MA/

Petersen, U.: 2005, Evaluating corpus query systems on functionality and speed: TIGERSearch
and Emdros. In: Angelova, G., Bontcheva, K., Mitkov, R., Nicolov, N. and
Nikolov, N. (eds): International Conference Recent Advances in Natural Language
Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005, pp.
387--391. http://www.hum.aau.dk/~ulrikp/pdf/Tiger-Emdros-2005-08-19-final.pdf

Petersen, U.: 2006a, Querying both Parallel and Treebank Corpora: Evaluation of a Corpus
Query System. In: European Language Resource Association (ELRA) Proceedings

12

Ulrik Petersen, "Genesis 1:1-3 in Graphs: Extracting Conceptual Structures from Biblical Hebrew", Hiphil 4
[http://www.see-j.net/hiphil] (2007). Published 15.1.2007

of LREC 2006, Language Resources and Evaluation Conference, Genoa, Italy, May
2006. http://www.hum.aau.dk/~ulrikp/pdf/LREC2006.pdf

Petersen, U.: 2006b, Principles, Implementation Strategies, and Evaluation of a Corpus Query
System. In: Yli-Jyrä, Anssi; Karttunen, Lauri; Karhumäki, Juhani (eds), Finite-State
Methods and Natural Language Processing 5th International Workshop, FSMNLP
2005, Helsinki, Finland, September 1-2, 2005, Revised Papers, Lecture Notes in
Computer Science, Volume 4002/2006, Springer Verlag, Heidelberg, New York,
pp. 215-226. DOI: 10.1007/11780885_21. http://dx.doi.org/10.1007/11780885_21

Schärfe, H. and Øhrstrøm, P.: 2000, Computer aided narrative analysis using conceptual graphs,
in G. Stumme (ed.), Working with Conceptual Structures: Contributions to ICCS
2000, Shaker Verlag, Aachen, pp. 16–29.

Southey, F. and Linders, J. G.: 1999, Notio - a Java API for developing CG tools, in
W. Tepfenhart and W. Cyre (eds), Proceedings of ICCS 1999, Vol. 1640 of LNAI,
Springer Verlag, Berlin, pp. 262–271.

Sowa, J. F.: 1988, Using a lexicon of canonical graphs in a semantic interpreter, in M. Evens
(ed.), Relational Models of the Lexicon, Cambridge University Press, Cambridge,
UK, pp. 113–137.

Sowa, J. F.: 1992, Conceptual graphs summary, in T. E. Nagle, J. A. Nagle, L. L. Gerholz and
P. W. Eklund (eds), Conceptual Structures: Current Research and Practice, Ellis
Horwood, New York, pp. 3–51.

Sowa, J. F.: 2000a, Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks/Cole Thomson Learning, Pacific Grove, CA.

Sowa, J. F.: 2000b, Ontology, metadata, and semiotics, in B. Ganter and G. W. Mineau (eds),
Proceedings of ICCS 2000, Vol. 1867 of LNAI, Springer Verlag, Berlin, pp. 55–81.

Sowa, J. F. and Way, E. C.: 1986, Implementing a semantic interpreter using conceptual graphs,
IBM Journal of Research and Development 30(1), 57–69.

Talstra, E. and Sikkel, C.: 2000, Genese und Kategorienentwicklung der WIVU-Datenbank, in
C. Hardmeier, W.-D. Syring, J. D. Range and E. Talstra (eds), Ad Fontes! Quellen
erfassen - lesen - deuten. Was ist Computerphilologie? , VU University Press,
Amsterdam, pp. 33–68.

van der Merwe, C., Naudé, J. A. and Kroeze, J. H.: 1999, A Biblical Hebrew Reference
Grammar, Sheffield Academic Press, Sheffield.

Van Valin, Jr., R. D. and LaPolla, R. J.: 1997, Syntax – Structure, meaning, and function,
Cambridge University Press, Cambridge, U.K.

Velardi, P., Pazienza, M. T. and De Giovanetti, M.: 1988, Conceptual graphs for the analysis
and generation of sentences, IBM Journal of Research and Development
32(2), 251–267.

13

	1 Introduction
	2 Literature review
	3 Ontology
	4 Creating conceptual structures
	4.1 Introduction
	4.2 From Syntax to Intermediate Graphs
	
	4.3 From Intermediate Graphs to Semantic Graphs
	4.4 Implementation
	5 Results
	6 Discussion
	6.1 Compositionality
	6.2 Shallow or surface semantics
	6.3 The non-centrality of Hebrew
	7 Conclusion
	References

